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Knowledge Engineering for Medical Decision 
Making: A Review of Computer-Based 

C linical Decision Aids 
EDWARD H. SHORTLIFFE, BRUCE G. BUCHANAN, AND EDWARD A. FEIGENBAUM 

Absrruct-Computer-based models of medical decision making account 
for a large portion of clinical computing efforts. This article reviews 
representative examples from each of several major medical computing 
paradigms. These include 1) clinical algorithms, 2) clinical databanks 
that include analytic functions, 3) mathematical models of physical 
processes, 4) pattern recognition, 5) Bayesian statistics, 6) decision 
analysis, and 7) symbolic reasoning or artificial intelligence. Because 
the techniques used in the various systems cannot be examined exhaus- 
tively, the case studies in each category are used as a basis for studying 
general strengths and limitations. It is noted that no one method is best 
for all applications. However, emphasis is given to the limitations of 
early work that have made artificial intelligence techniques and knowl- 
edge engineering research particularly attractive. We stress that consid- 

Manuscript received December 13. 1978; revised February 20, 1979. 
The authors are with the Heuristic Programming Project, Departments 

of Medicine and Computer Science, Stanford University, Stanford, CA 
94305. 

erable basic research in medical computing remains to be dorre and Lhzc 
powerful new approaches may lie in the melding of two P more ePab- 
fished techniques. 

1. INTRODUCTION 

S EARLY as the 1950’s, physicians and computer scien- 

A 
tists recognized that computers could assist with clinical 
decision making [ 631 and began to analyze medical diag- 

nosis with a view to the potential role of automated decision 
aids in that domain [ 611. Since that time a variety of tech- 
niques have been applied, accounting for at least 800 references 
in the clinical ard computing literature [ 1121. In this article 
we review several medical decision making paradigms and dis- 
cuss some issues that account for both the multiplicity of ap- 
proaches and the limited clinical success of most systems 
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developed to date. Because other authors have reviewed 
computer-aided diagnosis 1471, [ 921, [ 1141 and the potential 
impact of computers in medical care 1931, our emphasis here 
is somewhat different. We will focus on the symbolic repre- 
sentation and use of knowledge, termed “knowledge engineer- 
ing,” and the inadequacies of data-intensive techniques which 
have led to the exploration of novel symbolic reasoning ap- 
proaches during the last decade. 

A. Reasons for Attempting Computer-Aided Medical 
Decision Making 

Because of the accelerated growth in medical knowledge, 
physicians have tended to specialize and to become more de- 
pendent upon assistance from other experts when presented 
with a complex problem outside their own area of expertise. 
The primary care physician who first sees a patient has thou- 
sands of tests available with a wide range of costs (both fiscal 
and physical) and potential benefits (Le., arrival at a correct 
diagnosis or optimal therapeutic management).  Even the 
experts in a specialized field may reach very different decisions 
regarding the management of a specific case [ 1311. Diagnoses 
that are made, and upon which therapeutic decisions are based, 
have been shown to vary widely in their accuracy [26], [83], 
[ 891, Furthermore, medical students usually learn about 
decision making in an unstructured way, largely through obser- 
vation and by emulating the thought processes they perceive 
to be used by their clinical mentors [ 53 1. 

Thus the motivations for attempts to understand and auto- 
mate the process of clinical decision making have been numer- 
ous [ 1141. They are directed both at diagnostic models and at 
assisting with patient management decisions. Among the 
reasons for introducing computers into such work are the 
following: 

1) to improve the accuracy of clinical diagnosis through ap- 
proaches that are systematic, complete, and able to inte- 
grate data from diverse sources; 

2) to improve the reliability of clinical decisions by avoiding 
unwarranted influences of similar but not identical cases 
(a common source of bias among physicians), and by 
making the criteria for decisions explicit, and hence 
reproducible ; 

3) to improve the cost efficiency of tests and therapies by 
balancing the expenses of time, inconvenience, or funds 
against benefits and risks of definitive actions; 

4) to improve our understanding of the structure of medical 
knowledge, with the associated development of tech- 
niques for identifying inconsistencies and inadequacies in 
that knowledge; and 

5) to improve our understanding of clinical decision making, 
in order to improve medical teaching and to make com- 
puter programs more effective and easier to understand, 

B. The Distinction Between Data and Knowledge 
The models on which computer systems base their clinical 

advice range from data-intensive to knowledge-intensive ap- 
proaches. There are at least four types of knowledge that may 
be distinguished from pure statistical data: 

1) knowiedge derived from data analysis (largely numerical); 
2) judgmental or subjective knowledge; 
3) scientific or theoretical knowledge; 
4) high-level strategic knowledge or “self-knowledge.” 
If there is a chronology to the field over the last 20 years, it 

is that there has been progressively less dependence on “pure” 

observational data and more emphasis on higher level symbolic 
knowledge inferred from primary data. We include with do- 
main knowledge the category of “judgmental knowledge” 
which reflects the experience and opinions of an expert regard- 
ing an issue about which the formal data may be fragmentary 
or nonexistent. Since many decisions made in clinical medi- 
cine depend upon this kind of judgmental expertise, it is not 
surprising that investigators should begin to look for ways to 
capture and use the knowledge of experts in decision making 
programs. Another reason to move away from purely data- 
intensive programs is that in medicine the primary data avail- 
able to decision makers are far from objective [ZO], [ 571. 
They include subjective reports from patients, and error-prone 
observations [ 271. Also, the terminology used in the reports 
is not standardized [ 7] and the classifications often overlap. 
Thus decision making aids must be knowledgeable about the 
unreliability of the data [ 571 as well as the uncertainty of the 
inference. 

For example, data-intensive programs include medical record 
systems which accumulate large databanks to assist with deci- 
sion making. There is little knowledge per se in the databank, 
but there are large amounts of data which can help with deci- 
sions and be analyzed to provide new knowledge. A program 
that retrieves a patient’s record for review, or even one that 
identifies and retrieves the records of similar patients (match- 
ing some set of descriptors), is performing a data management 
task with little reasoning involved [ 361, [ 861, Although there 
is statistical “knowledge” contained in the conditional probabil- 
ities generated from such a databank and utilized for Bayesian 
analysis, it is all numeric. At the other extreme are systems 
that encode and use the kind of expert knowledge which can- 
not be easily gleaned from databanks or literature review [ 7.51, 
[1021. Systems that model human reasoning or emphasize 
education of users tend to fall towards this end of the data- 
knowledge continuum. 

In addition to judgmental and statistical knowledge, there 
are other forms of information that can play an important role 
in computer-based clinical decision aids. For example, under- 
lying scientific theories and relationships are often ignored by 
diagnostic programs but provide the foundation for decisions 
made by human experts. Consider, for example, the potential 
utility of techniques that could effectively represent and use 
the basic knowledge of biochemistry, biophysics, or detailed 
human physiology. Biomedical modeling research offers some 
mathematical techniques for encoding such knowledge in cer- 
tain domains, but symbolic approaches and clinically useful 
applications are still largely unrealized. 

Finally, there is another kind of knowledge used by human 
decision makers-an understanding of reasoning processes and 
strategies themselves. This kind of “high-level” or “meta-level” 
knowledge, if incorporated into computer programs, may not 
only heighten their decision making performance but also aug- 
ment their acceptability to users by making them appear 
more aware of their own power, strategies, and limitations. 

We use the term “knowledge engineering,” then, to refer to 
computer-based symbolic reasoning issues such as knowledge 
representation, acquisition, explanation, and “self-awareness” 
or self-modification [ 191. It is along these dimensions that 
knowledge-based programs differ most sharply from conven- 
tional calculations. For example, they can solve problems by 
pursuing a line of reasoning, the individual inference steps and 
the whole chain of reasoning may also form the basis for expla- 
nations of decisions. A major concern in knowledge engineering 
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is clear separation of the medical knowledge in a program from 
the inference mechanism that applies that knowledge to the 
data of individual cases. One goal of this paper is to identify, 
in the strengths and weaknesses of earlier work, those issues 
which have motivated several current researchers to investigate 
the automation of clinical decision aids through knowledge 
engineering. 

C. Parameters for Assessing Work in the Field 
Barriers to successful implementation of computer-based 

diagnostic systems have been analyzed on several occasions 
[ 71, [ 231, [ 1061 and need not be reviewed here. However,  in 
assessing programs it is pertinent to examine several parameters 
that affect the success and scope of a particular system in light 
of its intended users and application. Unfortunately, the 
medical computing literature has few descriptions of systems 
for which all the following issues can be assessed. 

1) How accurate is the program?’ 
2) What is the nature of the knowledge in the system and 

how is it generated or acquired? 
3) How is the clinical knowledge represented, and how does 

it facilitate the performance goals of the system described? 
4) How are knowledge and clinical data used and how does 

this impact system performance? 
5) Is the system accepted by the users for whom it is in- 

tended? Is the interface with the user adequate? Does the 
system function outside of a research setting and is it suitable 
for dissemination? 

6) What are the limitations of the approach? 
An issue we have chosen not to address is the cost of a sys- 

tem, including the size of the required computing resource. 
Not only is information on this question scanty for most of 
the programs, but expenses generated in a research and devel- 
opment environment do not realistically reflect the costs one 
expects from a system once it is operating for service use. 

D. Overview of this Paper 
An exhaustive review of computer-aided diagnosis will not 

be attempted in light of the vastness of the field, and we have 
therefore chosen to present the prominent paradigms by dis- 
cussing representative examples. In separate sections we give 
an overview, example, and discussion of 1) clinical algorithms, 
2) databank analysis, 3) mathematical models, 4) pattern rec- 
ognition, 5) Bayesian analysis, 6) decision theory, and 7) sym- 
bolic reasoning. We close each section by identifying the range 
of applications for which the approach appears most appro- 
priate, the limitations of the approach, and the ways in which 
symbolic reasoning techniques may strengthen the approach 
by improving its performance or acceptability. 

The seven principle examples we have selected are not neces- 
sarily the best nor the most successful; however, they illustrate 
the issues we wish to discuss within the major paradigms. We 
have also referenced other closely related systems, so the bibli- 
ography should guide the reader to more details on particular 
topics. Any attempt to categorize programs in this way is 
inherently fraught with problems in that several systems draw 

' Although this is important it is not the only measure of clinical ef- 
fectiveness. For example, the effects on morbidity, mortality, and length 
of hospital stay may also be important parameters. As we shall show, 
few systems have reached a stage of implementation where these param- 
eters could be assessed. Moreover, because of the complexity of the 
interacting influences that affect the usual measures of outcome, it may 
be difficult ever to define the marginal benefit of such systems. 

upon more than one paradigm. Thus we have occasionally felt 
obligated to simplify a topic for clarity in light of the overall 
purposes of this review and the limitations of the space avail- 
able to us. 

Because we are only interested here in decision making tools 
for use by clinicians, we have chosen to disregard systems that 
are designed primarily for use by researchers [ 391, [SO], [65], 
[ 901. Furthermore, we shall not discuss biomedical engineer- 
ing applications of computers, such as advanced automated 
instrumentation techniques (e.g., computerized tomography* ) 
or signal processing techniques (e.g., programs for EKG anal- 
ysis [ 791 or patient monitoring [ 1161). Because they do not 
explicitly make inferences, we have also omitted programs 
designed largely for data storage and retrieval with the actual 
analysis and decision making left to the clinician [ 361, [ 581, 
[124]. We have also chosen to discuss working computer 
programs rather than unimplemented theories or early reports 
of work in progress. 

II. CLINICAL ALGORITHMS AND AUTOMATION 

A. Overview 
Clinical algorithms, or protocols, are flowcharts to which a 

diagnostician or therapist can refer when deciding how to 
manage a patient with a specific clinical problem [ 971. Such 
protocols usually allow decisions to be made by carefully fol- 
lowing the simple branching logic, although there are built-in 
safeguards whereby referrals to experts are made if a patient is 
unusually complex. The value of a protocol depends upon the 
infrequency with which such referrals are made, so it is impor- 
tant to design algorithms that reflect an appropriate balance 
between safety and efficiency. In general, algorithms have 
been designed by expert physicians for use by paramedical 
personnel who have been entrusted with the performance of 
certain routine clinical-care tasks3 The methodology has 
been developed in part because of a desire to define basic 
medical logic concisely so that detailed training in pathophysi- 
ology would not be necessary for ancillary practitioners. Ex- 
perience has shown that intelligent high school graduates, 
selected in large part because of poise and warmth of person- 
ality, can provide excellent care guided by protocols after only 
four to eight weeks of training. This care has been shown to 
be equivalent to that given by physicians for the same limited 
problems, and to be accepted by physicians and patients alike 
for such diverse clinical situations as diabetes management 
[ 561, [66], pharyngitis [38], headache [37], and other dis- 
ease categories [ 1041, [ 1101. 

The role of the computer in such applications has been 
limited, however. In fact, several groups initially experimented 
with computer representation of the algorithms but have since 
abandoned the efforts and resorted to prepared paper forms 
[ 561, [ 1 lo]. In these cases the computer had originally guided 
the physician assistant’s collection of data and had specified 
precisely what decisions should be made or actions taken, in 
accordance with the clinical algorithm. However,  since the 
algorithmic logic is generally simple, and can often be repre- 
sented on a single sheet of paper, the advantages of an auto- 
mated approach over a manual system have not been clearly 

‘See Kak’s article in this issue. 
sClinical aleorithms have also been Dreoared for use by nhysicians 

themselves, bit Grimm has found that they are generally-less well- 
accepted by doctors [ 381. He showed, however, that physician per- 
formance could improve when protocols were used in certain settings. 
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demonstrated. In one study Vickery showed that supervising 
physicians could detect no significant difference between the 
performance of physicians’ assistants using automated versus 
manual systems. although the computer system entirely elimi- 
nated errors In data collection (since it demanded all relevant 
data at the appropriate time) [ 1101. Furthermore, the com- 
puter could not, of course, decide whether the actual observa- 
t:ons entered by the physicians’ assistant were correct; yet this 
kind uf inaccuracy was one of the most common reasons that 
supervisors found an assistant’s performance unsatisfactory. 

There are two other ways in which the computer has been 
used in ihe setting of clinical algorithms. First, mathematical 
technlqucs have be<n used to analyze signs and symptoms of 
diseases and thereby to identify those that should most ap- 
propridtciy bi: reirrenczd in corresponding clinical algorithms 
I30 1 _ [ 55 ] [ 1 13 1 The process for distilling expert knowl- 
edge in the form of a clinical algorithm can be an arduous and 
:rnp~rf’ect one [ 97) ; formal techniques to assist with this task 
may j,iklW to hc very valuable. 

FXr11i: :esearchcrs in this area also use computers to assist 
uith cll;liial care audit comparing actual actions taken by a 
phys~~i~na‘ assistant with those recommended by thealgorithm 
itself. Sax ci Al. [ 1041 have described a system in which the 
assistant’s chmkllst for a patient encounter was sent to a cen- 
trci! ;ornputer and snalyzed for evidence of deviation from the 
clccepte~.l plo!ucol. Computer-generated reports then served as 
fczdl)c~i\ lo the physicians‘ assistant and to the supervising 
ptiysrc:dns 

WC have selected for discussion a project that differs from 
thoslz previously cited in that 1) computer techniques are still 
being used, and 7) the clinical algorithms are designed for use 
i>y primary care physicians themselves. This is the cancer 
cl-;cmi:therapy system developed in Alabama by Mesel et al. 
[ ?Oi The Lt!gorithms were developed to allow private prac- 
titioners, at a distance from the regional tertiary-care center, 
TO manage the complex chemotherapy for their cancer patients 
without rautlnely referring them to the central oncologists. 
Mcsei <it oi. hdve described a “consultant-extender system” 
that cr,shles the primary physician to treat patients with Hodg- 
kin’s Disease uncler the supervision of a regional specialist. 
Five on,ulopists developed a care protocol for the treatment 
of Hodgkin’s Disease, and this algorithm was placed on-line. 
Once patients had agreed to participate in the study, their 
private phy:;iLlans would prepare “encounter forms” at the 
:ime ,:.f each office visit. These forms would document perti- 
nent internal history, physical findings, and lab data, as well 
as chemotherapy administered: The form would then be sent 
Lo ihe regional center where it was analyzed by the computer 
and 3 curtornized clinical algorithm was produced to assist the 
pribsti physlciCm with the management of that patient during 
the next appointment. Thus the computer program would 
iake itlto account the ways in which the individual patient’s 
disease might progress or improve and would prepare an ap- 
propriale clinical algorithm. This protocol was sent back to 
the phycician in time for it to be available at the next office 
visit The private practitioner was encouraged to call the 
regiona: specialist directly if the protocol seemed in some way 
inadequate or additional questions arose. The authors present 
Data suggesting that their system was well-accepted by physi- 

cians and patients, and that excellent care was delivered.4 
Retrospective review of cases that were treated at the referral 
center itself, but without the use of the protocols, showed a 
16-percent rate of variance from the management guidelines 
specified in the algorithms; there was no such variance when 
the protocols were followed. Thus algorithms may be effec- 
tive tools for the administration of complex specialized therapy 
in circumstances such as those described.’ 

C. Discussiotl of the Methodology 
Although clinical algorithms are among the most widespread 

and best accepted of the decision aids described in this article, 
the simplicity of their logic makes it clear why the technique 
cannot be effectively applied in most medical domains. Deci- 
sion points in the algorithm are generally binary (i.e., a given 
sign or symptom is either present or absent), and there tend to 
be many circumstances that can arise for which the user is 
advised to consult the supervising physician (or specialist). 
Thus the difficult decision tasks are left to experts, and there 
is generally no formal algorithm for managing the case from 
that point on. It is precisely the simplicity of the algorithmic 
logic, and the safeguard of the supervising expert, which have 
permitted many algorithms to be represented on one or two 
sheets of paper and have obviated the need for direct computer 
use in most of the systems. The contributions of clinical al- 
gorithms to the distribution and delivery of health care, to the 
training of paramedics, and to quality care audit, have been 
impressive and substantial. However,  the approach is not 
suitable for extension to the complex decision tasks to be dis- 
cussed in the following sections. 

III. DATABANK ANALYSIS ITOK PROGNOSIS AND 
THERAPY SELECTION 

A. Overview 
Automation of medical record keeping and the development 

of computer-based patient databanks have been major research 
concerns since the earliest days of medical computing. Most 
such systems have attempted to avoid direct interaction be- 
tween the computer and the physician recording the data, with 
the systems of Weed [ 1231, [ 124] and Greenes [36] being 
notable exceptions. Although the earliest systems were de- 
signed merely as record-keeping devices, there have been several 
recent attempts to create programs that could also provide 
analyses of the information stored in the computer databank. 
Some early systems [36], [ 521 had retrieval modules that 
identified all patient records matching a Boolean combination 
of descriptors; however, further analysis of these records for 
decision making purposes was left to the investigator. Weed 
has not stressed an analytical component in his automated 
problem-oriented record [ 1241, but others have developed 
decision aids which use medical record systems fashioned after 
his [ 103 1. 

The systems for databank analysis all depend on the develop- 
ment of a complete and accurate medical record system. Once 

4This is an interesting result in light of Grimm’s experience men- 
tioned in footnote 3. One possible explanation is that physicians were 
more accepting of the algorithmic approach in Mesel’s case because it 
allowed them to perform tasks that they would previously not have 
been able to undertake. 

‘More recently the Alabama group has reported similar success im- 
plementing a consultant-extender system for adjuvant chemotherapy 
in breast carcinoma [ I29 I. 
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such a system is developed, a number of additional capabilities 
can be provided: 1) correlations among variables can be calcu- 
lated, 2) prognostic indicators can be measured, and 3) the 
response to various therapies can be compared. A physician 
faced with a complex management decision can look to such 
a system for assistance in identifying patients in the past who 
had similar clinical problems and can then see how those pa- 
tients responded to various therapies. A clinical investigator 
keeping the records of his study patients on such a system can 
use the program’s statistical capabilities for data analysis. 
Hence, although these applications are inherently data-intensive, 
the kinds of “knowledge” generated by specialized retrieval and 
statistical routines can provide valuable assistance for clinical 
decision makers. For example, they help avoid the inherent 
biases of anecdotal experience, such as occur when an individ- 
ual practitioner bases decisions primarily on personal encoun- 
ters with one or two patients having a rare disease or complex 
of symptoms. 

There are many excellent programs in this category, one of 
which is discussed in some detail in the next section. Several 
others warrant mention, however. The HELP System at the 
University of Utah [ 1 171, [ 1 191, [ 1201 uses a large data file 
on patients in the Latter-Day Saints Hospital. Clinical experts 
formulate specialized “HELP sectors” which are collections of 
logical rules that define the criteria for a particular medical 
decision, These sectors are developed by an interactive pro- 
cess; the expert proposes important criteria for a given deci- 
sion and is provided with actual data regarding each criterion 
(based on relevant patients and controls from the computer 
databank). The criteria in the sector are thus adjusted by the 
expert until adequate discrimination is made to justify using 
the sector’s logic as a decision tool6 The sectors are then used 
for a variety of tasks throughout the hospital. 

Another system of interest is that of Feinstein ef al. at Yale 
[ 21 1, in which physicians interact with the system to request 
assistance in estimating prognosis and guiding management for 
patients with lung cancer. Similarly, Rosati ef a/. have devel- 
oped a system at Duke University which uses a large databank 
on patients who have undergone coronary arteriography [ 881. 
New patients can be matched against those in the databank to 
help determine patient prognosis under a variety of manage- 
ment alternatives. 

B. Example 
One of the most successful projects in this category is the 

ARAMIS system of Fries at Stanford University [ 241. The ap- 
proach was designed originally for use in an outpatient rheu- 
matology clinic, but then broadened to a general clinical data- 
base system, the time-oriented databank (TOD) [ 1261, [ 1271, 
so that it could be transferred to clinics in oncology, metabolic 
disease, cardiology, endocrinology, and certain pediatric sub- 
specialties. All clinic records are kept in a tabular fomat in 
which a column in a large table indicates a specific clinic visit 
and the rows indicate the relevant clinical parameters that are 
being followed over time. These charts are maintained by the 
physicians seeing the patient in clinic, and the new column of 
data is later transferred to the computer databank by a tran- 

6 This process might be seen as a technique to assist with the formula- 
tion of clinical algorithms as discussed in the previous section. Another 
approach using databank analysis for algorithm development is described 
in (301. 

scriptionist; in this way time-oriented data on all patients are 
kept current. The defined database (clinical parameters to be 
followed) is determined by clinical experts, and in the case of 
rheumatic diseases has now been standardized on a national 
scale [41], 

The information in the databank can be used to create a 
prose summary of the patient’s current status, and there are 
graphical capabilities which can plot specific parameters for a 
patient over time [ 1261. However,  it is in the analysis of stored 
clinical experience that the system has its greatest potential 
utility [ 251. In addition to performing search and statistical 
functions such as those developed in databank systems for 
clinical investigation [SO], [ 651, ARAMIS offers a prognostic 
analysis for a new patient when a management decision is to 
be made. Using the consultative services of the Stanford Im- 
munology Division, an individual practitioner may select clini- 
cal indices for his patient that he would like matched against 
other patients in the databank. It is imperative that such 
indices be selected wisely and hence with expert advice; the 
Stanford immunologists have found that the best descriptors 
for characterizing patients are often different from those that 
a novice chooses to use. Based on two to five such descriptors, 
the computer locates relevant prior patients and prepares a 
report outlining their prognosis with respect to a variety of 
endpoints (e.g., death, development of renal failure, arthritic 
status, pleurisy). Therapy recommendations are also generated 
on the basis of a response index that is calculated for the 
matched patients. A prose case analysis for the physician’s 
patient can also be generated; this readable document sum- 
marizes the relevant data from the databank and explains the 
basis for the therapeutic recommendation. 

The rheumatologic databank generated under ARAMIS has 
now been expanded to involve a national network of immu- 
nologists who are accumulating time-oriented data on their 
patients. This national project seeks in part to obtain enough 
data so that groups of retrieved patients will be sizable, thereby 
controlling for some observer variability and making the sys- 
tem’s recommendations more statistically defensible. 

C. Discussion of the Methodology 

Databank analysis systems have powerful capabilities to 
offer to the individual clinical decision maker. Furthermore, 
medical computing researchers recognize the potential value of 
large databanks in supporting many of the other decision mak- 
ing approaches discussed in subsequent sections. There are 
important additional issues regarding databank systems. 

1) Data acquisition remains a major problem. Many systems 
have avoided direct physician-computer interaction but have 
then been faced with the expense and errors of transcription. 
The developers of one well-accepted record system still express 
their desire to implement a direct interface with the physician 
for these reasons, although they recognize the difficulties 
encountered in encouraging direct use of a computer system 
by doctors [ 1071. 

2) .4nalysis of data in the system can be complicated by 
missing values that frequently occur, outlying values, and poor 
reproducibility of data across time and among physicians. 
Conversely, the system can itself be used to identify question- 
able values of tests or observations. 

3) The decision aids provided tend to emphasize patient 
management rather than diagnosis. Feinstein’s system [ 211 is 



1212 PROCEEDINGS OF THE IEEE,VOL.67,NO.9,SEPTEMBER 1979 

only useful for patients with lung cancer, for example, and the 
ARAMIS prognostic routines, which are designed for patient 
management, assume that the patient’srheumatologic diagnosis 
is already known. 

4) There is no formal correlation between the way expert 
physicians approach patient management decisions and the 
way the programs arrive at recommendations. Feinstein and 
Koss felt that the acceptability of their system would be limited 
by a purely statistical approach, and they therefore chose to 
mimic human reasoning processes to a large extent [ 591, but 
[heir approach appears to be an exception. 

5) Data storage space requirements can be large since the 
decision aids of course require a comprehensive medical record 
system as a basic component. 

Slamecka has distinguished between structured and empirical 
approaches to clinical consulting systems [ 1031, pointing out 
that databanks provide a largely empirical basis for advice, 
whereas structured approaches rely on judgmental knowledge 
elicted from the literature or from experts. It is important to 
note, however, that judgmental knowledge is itself based on 
empirical information. Even an expert’s “intuitions” are based 
on observations and “data collection” over years of experience. 
Thus one might argue that large, complete, and flexible data- 
banks c,,uld form the basis for large amounts of judgmental 
knowledge that we now have to elicit from other sources. 
Some researchers have indicated a desire to experiment with 
methods for the automatic generation of medical decision 
rules from databanks, and one component of the research on 
Slamecka’s MARIS system is apparently pointed in that direc- 
tion [ 103). Indeed, some of the most exciting and practical 
uses of large databanks may be found precisely at the interface 
with those knowledge engineering tasks that have most con- 
founded researchers in medical symbolic reasoning [ 51. 

IV. MATHEMATICAL MODELS OF PHYSICAL PROCESSES 

Pathophysiologic processes can be well-described by mathe- 
matical formulas in a limited number of clinical problem areas. 
Such domains have lent themselves well to the development of 
computer-based decision aids since the issues are generally 
well-defined. The actual techniques used by such programs 
tend to reflect the details of the individual applications, the 
most celebrated of which have been in pharmacokinetics 
(specifically digitalis dosing), acid-base/electrolyte disorders, 
and respiratory care [ 691. 

It is important that cooperating experts assist with the defini- 
tion of pertinent variables and the mathematical characteriza- 
tion of the relationships among them. The computer program 
requests the relevant data, makes the appropriate computa- 
tions, and provides a clinical analysis or recommendation for 
therapy. Some of the programs have also involved branched- 
chain logic to guide decisions about what further data are 
needed for adequate analysis.7 

Programs to assist with digitalis dosing have gradually intro- 
duced broader medical knowledge over the last ten years. The 

‘“Brarlched-chain” logic refers to mechanisms by which portions of a 
decision network can be considered or ignored. depending upon the data - . 
on a given case. For example, in an &d-b& piogram the anion gap 
might br calculated and a branch-point could then determine whether 
the pathway for analyzing an elevated anion gap would be required. If 
the gap were not elevated, fhat whole portion of the logic network 
could be skipped. 

earliest work was Jelliffe’s [48] and was based upon his con- 
siderable experience studying the pharmacokinetics of the 
cardiac glycosides. His computer program used mathematical 
formulations based on parameters such as therapeutic goals 
(e.g., desired predicted blood levels), body weight, renal func- 
tion, and route of administration. In one study he showed that 
computer recommendations reduced the frequency of adverse 
digitalis reactions from 3 5 percent to 12 percent [ 491. Later, 
another group revised the Jelliffe model to permit a feedback 
loop in which the digitalis blood levels obtained with initial 
doses of the drug were considered in subsequent therapy rec- 
ommendations [ 781, [ 961. More recently, a third group in 
Boston, noting the insensitivity of the first two approaches to 
the kinds of nonnumerical observations that experts tend to 
use in modifying digitalis therapy, augmented the pharmaco- 
kinetic model with a patient-specific model of clinical status 
[ 351. Running their system in a monitoring mode, in parallel 
with actual clinical practice on a cardiology service, they found 
that each patient in the trial in whom toxicity developed had 
received more digitalis than would have been recommended by 
their program. 

B. Example 
Perhaps the best known program in this category is the inter- 

active system developed at Boston’s Beth Israel Hospital by 
Bleich. Originally designed as a program for assessment of 
acid-base disorders [ 21, it was later expanded to consider elec- 
trolyte abnormalities as well [ 31, [4]. The knowledge in 
Bleich’s program is a distillation of his own expertise regarding 
acid-base and electrolyte disorders. The system begins by col- 
lecting initial laboratory data from the physician seeking advice 
on a patient’s management. Branched-chain logic is triggered 
by abnormalities in the initial data so that only the pertinent 
sections of the extensive decision pathways created by Bleich 
are explored. The approach is therefore similar to the flow- 
charting techniques used by the clinical algorithms of Section 
II, but it involves more complex mathematical relationships 
than algorithms typically do. Essentially all questions asked 
by the program are numerical laboratory values or “yes-no” 
questions (e.g., “Does the patient have pitting edema?“). De- 
pending upon the complexity and severity of the case, the 
program eventually generates an evaluation note that may vary 
in length from a few lines to several pages. Included are sug- 
gestions regarding possible causes of the observed abnormali- 
ties and suggestions for correcting them. Literature references 
are also provided with the recommendations. 

Although the program was made available at several East 
Coast institutions, few physicians accepted it as an ongoing 
clinical tool. Bleich points out that part of the reason for this 
was the system’s inherent educational impact; physicianssimply 
began to anticipate its analysis after they had used it a few 
times [ 31 .8 

The system’s lack of sustained acceptance by physicians is 
probably due to more than its educational impact, however. 
For example, there is no feedback in the system; every patient 
is seen as a new case and the program has no concept of follow- 
ing a patient’s response to prior therapy. Furthermore, the 
program generates differential diagnosis lists but does not pur- 
sue specific etiologies; this can be particularly bothersome 

'More recently he has been experimenting with the program operat- 
ing as a monitoring system, thereby avoiding direct interaction with the 
physician. 
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when there are multiple coexistent disturbances in a patient 
and the program simply suggests parallel lists of etiologies 
without noticing or pursuing the possible interrelationships. 

Finally, the system is highly individualized in that it contains 
only the parameters and relationships that Bleich specifically 
thought were important to include in the logic network. Of 
course human consultants also give personalized advice which 
may differ from that obtained from other experts. However,  a 
group of researchers in Britain [851 who compared Bleich’s 
program to four other acid-base/electrolyte systems, found 
total agreement among the programs in only 20 percent of test 
cases when these systems were asked to define the acid-base 
disturbance and the degree of compensation present. Their 
analysis does not reveal which of the programs reached the 
correct decision, however, and it may be that the results are 
more an indictment of the other four programs than a valid 
criticism of the advice from Bleich’s acid-base component. 

C. Discussion of the Methodologies 
The programs mentioned in this section differ from one 

another in several respects, and each tends to overlap with 
other paradigms we have discussed. Bleich’s program, for ex- 
ample, is essentially a complicated clinical algorithm interfaced 
with mathematical formulations of electrolyte and acid-base 
pathophysiology. As such it suffers from the weaknesses of all 
algorithmic approaches, most importantly its highly structured 
and inflexible logic which is unable to contend with circum- 
stances not specifically anticipated in the algorithm. The digi- 
talis dosing programs all draw on mathematical techniques 
from the field of biomedical modeling [40], but have recently 
shown more reliance on methods from other areas as well. In 
particular these have included symbolic reasoning methods 
that allow clinical expertise to be encoded and used in con- 
junction with mathematical techniques 135). The Boston 
group that developed this most recent digitalis program is 
interested in similarly developing an acid-base/electrolyte sys- 
tem so that judgmental knowledge of experts can be interfaced 
with the mathematical models of pathophysiology.’ 

There is also a large research community of mathematicians 
who attempt to understand and characterize physical processes 
by devising simulation models [40]. Although such models 
are largely empirical and have generally not found direct appli- 
cation in clinical medicine, their research role may eventually 
be broadened to provide practical decision aids through inter- 
faces with the other paradigms described in this review. 

The major strength of mathematical models is their ability to 
capture mathematically sound relationships in a concise and 
efficient computer program. However,  the major limitation, as 
with most of the paradigms discussed here, is that few areas of 
medicine are amenable to firm, quantitative description. Be- 
cause the accuracy of the results depends on correct identifica- 
tion of relevant parameters, the precision and certainty of the 
relationships among them, and the accuracy of the techniques 
for measuring them, mathematical models have limited appli- 
cability at present. Furthermore, those domains that do lend 
themselves to mathematical description may still benefit from 
interactions with symbolic reasoning techniques, as has been 
demonstrated in the digitalis therapy adviser [ 351. 

9This project was described by Professor Peter Szolovits, of MIT’s 
clinical decision making group, during a workshop on artificial intelli- 
gence in medicine at the University of Tokyo, Tokyo, Japan, in Novem- 
ber 1978. 

V. STATISTICAL PATTERN-RECOGNITION TECHNIQUES 

A. Overview 

Pattern-recognition techniques define the mathematical re- 
lationship between measurable features and classification of 
objects [ 151, [ 5 1 I. In medicine, the presence or absence of 
each of several signs and symptoms in a patient may be defini- 
tive for the classification of the patient as “abnormal” or into 
the category of a specific disease. They are also used for prog- 
nosis [ 11, or predicting disease duration, time course, and out- 
comes. These techniques have been appiied to a variety of 
medical domains, such as image processing and signal analysis, 
in addition to computer-assisted diagnosis, 

In order to find the diagnostic pattern, or discriminant func- 
tion, the method requires a training set of objects, for which 
the correct classification is already known, as well as reliable 
values for their measured features. If the form and parameters 
are not known for the statistical distributions underlying the 
features, then they must be estimated. Parametric techniques 
focus on learning the parameters of the probability density 
functions, while nonparametric (or “distribution-free”) tech- 
niques make no assumptions about the form of the distribu- 
tions. After training, then, the pattern can be compared to 
new, unclassified objects to aid in deciding the category to 
which the new object belongs.” 

There are numerous variations on this general approach, most 
notably in the mathematical techniques, used to extract char- 
acteristic measurements (the features) and to iind and refine 
the pattern classifier during training. For example, linear re- 
gression analysis is a commonly used technique for finding the 
coefficients of an equation that defines a recurring pattern or 
category of diagnostic or prognostic interest. A class of pa- 
tients can be described by a feature vector X = [.vr , x2, . . , 
x,1 (where xi is one of n descriptive variables). The goal is to 
produce an equation relating the posterior probabilities” of 
each diagnostic class to the feature vector through a set of n 
coefficients (ai)” : 

P(DiIX)=a,xl +azxz +-*.+a,x,. 

Recent work emphasizes structural relationships among sets of 
features more than statistical ones. 

Three of the best known training criteria for the discrimi- 
nant 

a) 

b) 

cl 

Ten 

function are: 
least squared error criterion: choose the function that 
minimizes the squared differences between predicted and 
observed measurement values; 
clustering criterion: choose the function that produces 
the tightest clusters; 
Bayes’ criterion: choose the function that has the mini- 
mum cost associated with incor.ect diagnoses.‘” 
commonly used mathematical models based on these 

“It is possible to detect patterns, even without a known classifica- 
tion for objects in the training set, with so-called “unsupervised” learn- 
ing techniques. Also, it is possible to work with both numerical and 
nonnumerical measurements. 

” The posterior probability of a diagnostic class, represented as 
P(DilX), is the probability that a patient falls in diagnostic category Di 
given that the feature vector X has been observed. 

ia See (621 for a study in which the coefficients are reported because 
of their medical import. 

‘“This is one of many uses of Bayes’ Theorem, a definitional rule that 
relates posterior and prior probabilities. For an overview of its use as a 
diagnostic rule (as opposed to a training criterion) and a definition of 
the formula, see Section VI. 
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criteria have been shown to produce remarkably similar diag- 
nostic results for the same data [ 71, 

B. Example 
There are numerous papers on uses of pattern recognition 

methods in medicine. Armitage [ 111 discusses three examples 
of prognostic studies, with an emphasis on regression methods. 
Goldwyn et al. [ 3 11 discuss uses of cluster analysis. One re- 
cent diagnostic application by Patrick [ 731 uses Bayes’ criterion 
to classify patients having chest pains into three categories: 
D,: acute myocardial infarction (MI); D,: coronary insuffi- 
ciency; and D3 : noncardiac causes of chest pain. The need for 
early diagnosis of heart attacks without laboratory tests is a 
prevalent problem, yet physicians are known to misclassify 
about one third of the patients in categories D, and D2 and 
about 80 percenl of those in D3. In order to determine the 
correct classification, each patient in the training set was classi- 
fied after 3 days, based on laboratory data including electro- 
cardiogram (ECG) and blood data (cardiac enzymes).  There 
remained some uncertainty about several patients with “prob- 
able MI.” Seventeen variables were selected from many: 9 
features with continuous values (including age, heart rates, 
white blocd count, and hemoglobin) and 8 features with dis- 
crete values (sex and 7 ECG features). 

The training data were measurements on 247 patients, The 
decision rule was chosen using Bayes’ Theorem to compute the 
posterior probabilities of each diagnostic class given the feature 
vector X (X = [x1, x2, . . , xl7 ] ). Then a decision rule was 
chosen to minimize the probability of error by adjusting the 
coefficients on the feature vector X such that for the correct 
class Di: 

P(DiIX)= MAX IP(DI I-k’), P(D2IX), P(DJIX)I 

The class conditional probability density functions must be 
estimated initially, and the performance of the decision rule 
depends on the accuracy of the assumed model. 

Using the same 247 patients for testing the approach, the 
trained classifier averaged 80 percent correct diagnoses over 
the three classes, using only data available at the time of ad- 
mission. Physicians, using more data than the computer, aver- 
aged only SO.5 percent correct over these three categories for 
the same patients. Training the classifier with a subset of the 
patients, and using the remainder for testing produced nearly 
as good results. 

C. Discussion of the Methodology 
The number of reported medical applications of pattern rec- 

ognition techniques is large, but there are also numerous prob- 
lems associated with the approach. The most obvious difficul- 
ties are choosing the set of features in the first place, collecting 
reliable measurements on a large sample, and verifying the 
initial classifications among the training data. Current tech- 
niques are inadequate for problems in which trends or move- 
ment of features are important characteristics of the categories. 
Also the problems for which existing techniques are accurate 
are those that are well characterized by a small number of 
features (“dimensions of the space”). 

As with all techniques based on statistics, the size of the 
sample used to define the categories is an important considera- 
tion. As the number of important features and the number of 
relevant categories increase, the required size of the training set 
also increases. In one test 171, pattern classifiers trained to 
discriminate among 20 disease categories from 50 symptoms 

were correct 51-64 percent of the time. The same methods 
were used to train classifiers to discriminate between 2 of the 
diseases, from the Same 50 symptoms, and produced correct 
diagnoses 92 -98 percent of the time. 

The context in which a local pattern is identified raises prob- 
lems related to the issue of utilizing medical knowledge. It is 
difficult to find and use classifiers that are best for a small 
decision, such as whether an area of an X-ray is inside or out- 
side the heart, and integrate those into a global classifier, such 
as one for abnormal heart volume. 

Accurate application of a classifier in a hospital setting also 
requires that the measurements in that clinical environment 
are consistent with the measurements used to train the classi- 
fier initially. For example, if diseases and symptoms are de- 
fined differently in the new setting, or if lab test values are 
reported in different ranges, or different lab tests used, then 
decisions based on the classification are not reliable. 

Pattern recognition techniques are often misapplied in medi- 
cal domains in which the assumptions are violated. Some of 
the difficulties noted above are avoided in systems that inte- 
grate structural knowledge into the numerical methods and in 
systems that integrate human and machine capabilities into 
single interactive systems. These modifications will overcome 
one of the major difficulties seen in completely automated 
systems, that of providing the system with good “intuitions” 
based on an expert’s a priuri knowledge and experience [ 5 I] 

VI. BAYESIAN STATISTICAL APPROACHES 

A. Overview 
More work has been done on Bayesian approaches to com- 

puter-based medical decision making than on any of the other 
paradigms we have discussed. The appeal of Bayes’ TheoremI 
is clear: it offers a potentially exact method for computing 
the probability of a disease based on observations and data 
regarding the frequency with which these observations are 
known to occur for specified diseases. In several domains the 
technique has been shown to be exceedingly accurate, but 
there are also several limitations to the approach which we 
discuss below. 

In its simplest formulation, Bayes’ Theorem can be seen as a 
mechanism to calculate the probability of a disease, in light of 
specified evidence, from the a priori probability of the disease 
and the conditional probabilities relating the observations to 
the diseases in which they may occur. For example, suppose 
disease Di is one of n mutually exclusive diagnoses under con- 
sideration and E is the evidence or observations supporting 
that diagnosis. Then if P(Dt) is the a ptioti probability of the 
ith disease:” 

P(DiIE) = 
P(Dj)P(EIDi) 

The theorem can also be represented or derived in a variety of 
other forms, including an odds/likelihood ratio formulation. 
We cannot include a full discussion here, but any introductory 
statistics book or Lusted’s volume [64] presents the subject in 
considerable detail. 

I4 Also often referred to as Bayes’ rule, discriminant, or criterion, 
ISHere P(QIE) is the probability of the ith disease given that evi- 

dence E has been observed; P(EIDi) is the probability that evidence E 
wiil be observed in the setting of the ith disease. 
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Among the most commonly recognized problems with the 
utilization of a Bayesian approach is the large amount of data 
required to determine all the conditional probabilities needed 
in the rigorous application of the formula. Chart review or 
computer-based analysis of large databanks occasionally allows 
most of the necessary conditional probabilities to be obtained. 
A variety of additional assumptions must be made. For ex- 
ample: 1) the diseases under consideration are assumed mu- 
tually exclusive and exhaustive (i.e., the patient is assumed to 
have one of the I: diseases), 2) the clinical observations are as- 
sumed to be conditionally independent over a given disease,16 
and 3) the incidence of the symptoms of a disease is assumed 
to be stationary (i.e., the model does not allow for changes in 
disease patterns over time). 

One of the earliest Bayesian programs was Warner’s system 
for the diagnosis of congenital heart disease [ 1151. He com- 
piled data on 83 patients and generated a symptom-disease 
matrix consisting of 53 symptoms (attributes) and 35 disease 
entities. The diagnostic performance of the computer, based 
on the presence or absence of the 53 symptoms in a new pa- 
tient, was then compared to that of two experienced physi- 
cians. The program was shown to reach diagnoses with an 
accuracy equal to that of the experts. Furthermore, system 
performance was shown to improve as the statistics in the 
symptom-disease matrix stabilized with the addition of in- 
creasing numbers of patients. 

In 1968 Gerry and Barnett pointed out that Warner’s pro- 
gram had required making all 53 observations for every patient 
to be diagnosed, a situation which would not be realistic for 
many clinical applications. They therefore used a modifica- 
tion of Bayes’ Theorem in which observations are considered 
sequentially.” Their computer program analyzed observations 
one at a time, suggested which test would be most useful if 
performed next, and included termination criteria so that a 
diagnosis could be reached, when appropriate, without needing 
to make all the observations [ 321. Decisions regarding tests 
and termination were made on the basis of calculations of ex- 
pected costs and benefits at each step in the logical process.” 
Using the same symptom-disease matrix developed by Warner, 
they were able to attain equivalent diagnostic performance 
using only 6.9 tests on average.” They pointed out that be- 
cause the costs of medical tests may be significant (in terms 
of patient discomfort, time expended, and financial expense), 
the use of inefficient testing sequences should be regarded as 
ineffective diagnosis. Warner has also more recently included 
Gorry and Barnett’s sequential diagnosis approach in an appli- 
cation regarding structured patient history-taking [ 1181. 

The medical computing literature now includes many ex- 
amples of Bayesian diagnosis programs, most of which have 
used the nonsequential approach, in addition to the necessary 
assumptions of symptom independence and mutual exclusive- 

I6 The purest form of Bayes’ Theorem allows conditional dependen- 
cies and the order in which evidence is obtained to be explicitly con- 
sidered in the analysis. However, the number of required conditional 
probabilities is so unwieldy that conditional independence of observa- 
tions and nondependence on the order of observations are generally 
assumed [ IOS]. 

“A similar approach was devised in Russia at approximately the 
same time by Vishnevskiy and associates. Their analyses and a sum- 
mary of the impressive amount of statistical data they have amassed are 
contained in [ 1111. 

‘*See the decision theory discussion in Section VII. 
I9 Tests for determining attributes were defined somewhat differently 

than they had been by Warner. Thus the maximum number of tests 
was 31 rather than the 53 observations used in the original study. 

ness of disease as discussed above. One particuiarly successful 
research effort has been chosen for discussion. 

B. Example 

Since the late 1960’s deDomba1 and associates, ,!t the Uni- 
versity of Leeds, England, have been studying rhe diagnost;c 
process and developing computer-based de&on Jids using 
Bayesian probability theory. Their area of invcstlgatiu:l ha:: 
been gastrointestinal diseases, originally acute ab~!o:ninai pain 
[ 121 with more recent analyses of dyspepsia [ 44 ] ‘ind gastric 
carcinoma [ 134 ] 

Their program for assessment of acute abdomindl pam wa.t 
evaluated in the emergency room of their aff&aictl hospital 
[ 121. Emergency physicians filled out data sheets samnmi?- 
ing clinical and laboratory findings on 304 paiirnts pre:,enting 
with abdominal pain of acute onset. The da!a irt.>m the\e 
sheets became the attributes that we-0 ,_ subjected to Bd)‘es:an 

analysis; the required conditional probabilities h.1t.i been prt’-- 
viously compiled from a large group of patients with one c\i 
seven possible diagnoses.‘.O Thus the Bar~esiar, formulaiicl: . 
assurned each patient had one of these diseases and would 
select the most likely on the basis of recclrded observation:,. 
Diagnostic suggestions were obtained in batch mcde ar;d did 
not require direct interaction between ;Ihysic;ian LIT!~ CORP 
puter; the program could generate rcstilts withill 3;) s  to ! 5 
min depending upon the level of sqst~l:-i ust: dt the tme ,bi 
analysis [43]. Thus the cornpLtcr outjru: c:lii:.l have he?11 
made available to the emergency rcom piiysi:,ian, ,.$II dverage, 
within 5 min after the data form was complz!~.:.i ,+i:~;l !.,inded ic> 
the technician assisting with the study. 

During the study [ 121, however, these cornput:-r-~:~n~i,~:~~~! 
diagnoses were simply saved and later compared to (a) ?he (:I+ 
noses reached by the attending clinicians, dnd (b) the Ii!tin^atc 
diagnosis verified at stirgee or through app:cipiia?e testi. Al 
though the clinicians reached the (correct diagnus~:, in only 

65-80 percent of the 304 cases (with a;curs:y depending 
upon an individual’s training and experience). :!:r progr,m VV’JP 
correct in 91.8 percent of cases. Furthermore in 6 ,I!‘ the 7 \ 
disease categories the computer was proved more libci, ths:, 
the senior clinician in charge of a case to assign rhe patient ic 
the correct disease category. Of particuiar intc;e:.r was !iie 
program’s accuracy regarding appendicitis. d diagr.oL,is wh:l:h 
is often made incorrectly. In no cases of appendicrrl:. did th*: 
computer fail to make the correct diagnosis, an11 iii only six 
cases were patients with nonspecific abdominal pain inci;r- 
rectly classified as having appendicitis. Based L\n the ac!u,li 
clinical decisions, however, over 2.0 patients with nonspecilit: 
abdominal pain were unnecessari ly taken to surgrry for ap- 
pendicitis, and in six cases patients with appendicitis u-cl-e 
“watched” for over eight hours before they were. firiaily taken 
to the operating room. 

These investigators also performed a fascinating experiment 
in which they compared the program’s performance based <:P 
data derived from 600 real patients, with the accuracy the sys- 
tern achieved using “estimates” of conditional pl:jb3b&itics 
obtained from experts I601 .*’ As discussed above-, the pr(:- 

“Appendicitis, diverticulitis, perforated ulcer, cholecystitis. small 
bowel obstruction, pancreatitis, and nonspecific abdominal pain. 

*’ Such estimates are referred to as “subjective” or “perscmai” pri\?fa- 
bilities, and some investigators have argued that they should be ilxetl tli 
Bayesian systems when formally derived conditionai probabilities err 
not available [ 641. 
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gram was significantly more effective than the unaided clini- realistic and hence unworkable. Furthermore, even when diag- 
cian when real-life data were used. However,  it performed nostic performance is excellent such as in deDombal’s approach 
significantly less well than clinicians when expert estimates to abdominal pain evaluation, clinical implementation and 
were used. The results supported what several other observers system acceptance will generally be difficult. Forms of repre- 
have found, namely that physicians often have very little idea sentation that allow explanation of system performance in 
of the “true” probabilities for symptom-disease relationships. familiar terms (i.e., a more congenial interface with physician 

Another Leeds study of note was an analysis of the effect of users) will heighten clinical acceptance; it is at this level that 
the system on the performance of clinicians [ 131. The trial Bayesian statistics and symbolic reasoning techniques may 
we have mentioned that involved 304 patients was eventually most beneficially interact. 
extended to 552 before termination. Although the computer’s 
accuracy remained in the range of 91 percent throughout this 
period, the performance of clinicians was noted to improve 

VII. DECISION THEORETICAL APPROACHES 

markedly over time. Fewer negative laparotomies were per- A, Overview 
formed, for example, and the number of acute appendices that 
perforated (ruptured) also declined. However,  these data slowly Bayes’ Theorem is only one of several techniques used in the 
returned towards baseline after the study was terminated, sug- larger field of decision analysis, and there has recently been in- 
gesting that the constant awareness of computer monitoring creasing interest in the ways in which decision theory might be 
and feedback regarding system performance had temporarily applied to medicine and adapted for automation. Several ex- 
generated a heightened awareness of intellectual processes cellent reviews of the field are available in basic reviews [ 45 1, 
among the hospital surgeons. textbooks [ 841, and medically oriented journal articles [ 671, 

C. Discussion of the Methodology 
[ 941, [ 1091. In general terms, decision analysis can be seen 
as any attempt to consider values associated with choices, as 

The ideal matching of the problem of acute abdominal pain well as probabilities, in order to analyze the processes by 
and Bayesian analysis must be emphasized; the technique can- which decisions are made or should be made. Schwartz identi- 
not necessarily be as effectively applied in other medical do- fies the calculation of “expected value” as central to formal 
mains where the following limitations of the Bayesian approach decision analysis [ 941. Ginsberg contrasts medical classifica- 
may have a greater impact. tion problems (e.g., diagnosis) with broader decision problems 

1) The assumption of conditional independence of symp- 
toms usually does not apply and can lead to substantial errors 
in certain settings [ 721. This has led some investigators to 
seek new numerical techniques that avoid the independence 
assumption [S] If a pure Bayesian formulation is used with- 
out making the independence assumption, however, the 
number of required conditional probabilities becomes pro- 
hibitive for complex real world problems [ 1081. 

2) The assumption of mutual exclusiveness and exhaustive- 
ness of disease categories is usually false. In actual practice 

(e.g., “What should I do for this patient?“), and asserts that 
most important medical decisions fall in the latter category 
and are best approached through decision analysis [ 291. 

The following topics are among the central issues in the 
field. 

I) Decision Trees: The decision making process can be seen 
as a sequence of steps in which the clinician selects a path 
through a network of plausible events and actions. Nodes in 
this tree-shaped network are of two kinds: decision nodes, 
where the clinician must choose from a set of actions, and 

concurrent and overlapping disease categories are common. In chance nodes, where the outcome is not directly controlled by 
deDombal’s system, for example, many of the abdominal the clinician but is a probabilistic response of the patient to 
pain diagnoses missed were outside the seven “recognized” some action taken. For example, a physician may choose to 
possibilities; if a program starts with an assumption that it perform a certain test (decision node) but the occurrence or 
need only consider a small number of defined likely diagnoses, nonoccurrence of complications may be largely a matter of 
it will inevitably miss the rare or unexpected cases (precisely statistical likelihood (chance node). By analyzing a difficult 
the ones with which the clinician is most apt to need assistance). decision process before taking any actions, it may be possible 

3) In many domains it may be inaccurate to assume that to delineate in advance all pertinent chance and decision nodes, 
relevant conditional probabilities are stable over time (e.g., all plausible outcomes, plus the paths by which these out- 
the likelihood that a particular bacterium will be sensitive to comes might be reached. Furthermore, data may exist to 
a specific antibiotic). Furthermore, diagnostic categories and allow specific probabilities to be associated with each chance 
definitions are constantly changing, as are physicians’ obser- node in the tree. 
vational techniques, thereby invalidating data previously ac- 
cumulated.** A similar problem results from variations in 

2) Expected Values: In actual practice physicians make 
sequential decisions based on more than the probabilities as- 

a priori probabilities depending upon the population from 
which a patient is drawn.23 

sociated with the chance node that follows. For example, the 
Some observers feel that these best possible outcome is not necessarily sought if the costs 

are major limitations to the use of Bayesian techniques [ 161 associated with that “path” far outweigh those along alternate 
In general, then, a purely Bayesian approach can so constrain pathways (e.g., a definitive diagnosis may not be sought if the 

problem formulation as to make a particular application un- required testing procedure is expensive or painful and patient 
management will be unaffected; similarly, some patients prefer 
to “live with” an inguinal hernia rather than undergo a surgical 

*2 Although gradual changes in definitions or observational techniques repair procedure). Thus anticipated “costs” (financial, compli- 
may be statistically detectable by database analysis. a Bayesian analysis cations, discomfort, patient preference) can be associated with 
that uses such data is inevitably prone to error. 

*‘deDombal has examined such geographic and population-based 
the decision nodes. Using the probabilities at chance nodes, 

variations in probabilities and has reported early results of his analysis the costs at decision nodes, and the “value” of the various 
1141. outcomes, an “expected value” for each pathway through the 
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tree (and in turn each node) can be calculated. The ideal path- 
way, then, is the one which maximizes the expected value. 

3) Eliciting Values: Obtaining from physicians and patients 
the costs and values they associate with various tests and out- 
comes can be a formidable problem, particularly since formal 
analysis requires expressing the various costs in standardized 
units. One approach has been simply to ask for value ratings 
on a hypothetical scale, but it can be difficult to get the physi- 
cian or patient to keep the values24 separate from their knowl- 
edge of the probabilities linked to the associated chance nodes. 
An alternate approach has been the development of lottery 
games. Inferences regarding values can be made by identifying 
the odds, in a hypothetical lottery, at which the physician or 
patient is indifferent regarding taking a course of action with 
certain outcome and betting on a course with preferable out- 
come but with a finite chance of significant negative costs if 
the “bet” is lost. In certain settings this approach may be ac- 
cepted and provide important guidelines in decision making 
[771. 

4) Test Evaluation: Since the tests which lie at decision 
nodes are central to clinical decision analysis, it is crucial to 
know the predictive value of tests that are available. This leads 
to consideration of test sensitivity, specificity, receiver opera- 
tor characteristic curves, and sensitivity analysis. Such issues 
are discussed by Komaroff in this issue [57] and have also 
been summarized elsewhere in the clinical literature [ 681. 

Many of the major studies of clinical decision analysis have 
not specifically involved computer implementations. Schwartz 
et al. examined the workup of renal vascular hypertension, 
developing arguments to show that for certain kinds of cases a 
purely qualitative theoretical approach was feasible and use- 
ful 194). However,  they showed that for more complex clini- 
cally challenging cases the decisions could not be adequately 
sorted out without the introduction of numerical techniques. 
Since it was impractical to assume that clinicians would ever 
take the time to carry out a detailed quantitative decision 
analysis by hand, they pointed out the logical role for the 
computer in assisting with such tasks and accordingly de- 
veloped the system we discuss as an example below [ 331 

Other colleagues of Schwartz at Tufts have been similarly 
active in applying decision theory to clinical problems. Pauker 
and Kassirer have examined applications of formal cost- 
benefit analysis to therapy selection [74] and Pauker has 
also looked at possible applications of the theory to the 
management of patients with coronary artery disease [ 761. 
An entire issue of the New England Journal of Medicine has 
also been devoted to papers on this methodology [ 461. 

B. Example 

Computer implementations of clinical decision analysis have 
appeared with increasing frequency since the mid-l 960’s. 
Perhaps the earliest major work was that of Ginsberg at Rand 
Corporation [28], with more recent systems reported by 
Pliskin and Beck [80] and Safran et al. [ 911. 

We will briefly describe here the program of Gorry et al., 
developed for the management of acute renal failure (331. 
Drawing upon Gorry’s experience with the sequential Bayesian 
approach previously mentioned [ 321, the investigators recog- 
nized the need to incorporate some way of balancing the 

“‘Also termed “utilities” in some references; hence, the term “utility 
theory” [ 84 1. 

dangers and discomforts of a procedure against the value of 
the information to be gained. They divided their program into 
two parts: phase I considered only tests with minimal risk 
(e.g., history, examination, blood tests) and phase II con- 
sidered procedures involving more risk and inconvenience. 
The phase I program considered 14 of the most common 
causes of renal failure and used a sequential test selection 
process based on Bayes’ Theorem and omitting more advanced 
decision theoretical techniques [ 321. The conditional prob- 
abilities used were subjective estimates obtained from an 
expert nephrologist and were therefore potentially as proble- 
matic as those discussed by Leaper et al. [60] (see Section 
VI-B). The researchers found that they had no choice but to 
use expert estimates, however, since detailed quantitative data 
were not available either in databanks or the literature. 

It is in the phase II program that the methods of decision 
theory were employed because it was in this portion of the 
decision process that the risks of procedures became important 
considerations. At each step in the decision process this 
program considers whether it is best to treat the patient im- 
mediately or to first carry out an additional diagnostic test. 
To make this decision the program identifies the treatment 
with the highest current expected value (in the absence of 
further testing), and compares this with the expected values 
of treatments that could be instituted if another diagnostic 
test were performed. Comparison of the expected values are 
made in light of the risk of the test in order to determine 
whether the overall expected value of the test is greater than 
that of immediate treatment. The relevant values and prob- 
abilities of outcomes of treatment were obtained as subjective 
estimates from nephrologists in the same way that symptom- 
disease data had been obtained. All estimates were gradually 
refined as they gained experience using the program, however. 

The program was evaluated on 18 test cases in which the 
true diagnosis was uncertain but two expert nephrologists 
were willing to make management decisions. In 14 of the 
cases the program selected the same therapeutic plan or 
diagnostic test as was chosen by the experts. For three of the 
four remaining cases the program’s decision was the physi- 
cians’ second choice and was, they felt, a reasonable alterna- 
tive plan of action. In the last case the physicians also ac- 
cepted the program’s decision as reasonable although it was 
not among their first two choices. 

C. Discussion of the Methodology 
The excellent performance of Gorry’s program, despite its 

reliance on subjective estimates from experts, may serve to 
emphasize the importance of the clinical analysis that under- 
lies the decision theoretical approach. The reasoning steps in 
managing clinical cases have been dissected in such detail that 
small errors in the probability estimates are apparently much 
less important than they were for deDombal’s purely Bayesian 
approach [ 601. Gorry suggests this may be simply because 
the decisions made by the program are based on the combina- 
tion of large aggregates of such numbers, but this argument 
should apply equally for a Bayesian system. It seems to us 
more likely that distillation of the clinical domain in a formal 
decision tree gives the program so much more knowledge of 
the clinical problem that the quantitative details become 
somewhat less critical to overall system operation. The ex- 
plicit decision network is a powerful knowledge structure; 
the “knowledge” in deDombal’s system lies in conditional 
probabilities alone and there is no larger scheme to override 
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the propagation of error as these probabilities are mathemati- 
cally manipulated by the Bayesian routines. 

The decision theory approach is not without problems, 
however. Perhaps the most difficult problem is assigning 
numerical values (e.g., dollars) to a human life or a day of 
health, etc. Some critics feel this is a major limitation to the 
methodology [ 1201 Overlapping or coincidental diseases are 
also not well-managed, unless specifically included in the 
analysis, and the Bayesian foundation for many of the calcula- 
tions still assumes mutually exclusive and exhaustive disease 
categories. Problems of symptom conditionat dependence 
still remain, and there is no easy way to include knowledge 
regarding the tune course of diseases. Gerry points out that 
his program was also incapable of recognizing circumstances in 
which two or more actions should be carried out concurrently. 
Furthermore, decision theory per se does not provide the kind 
of focusing mechanisms that clinicians tend to use when they 
assume an initia! diagnostic hypothesis in dealing with a 
patient and discard it only if subsequent data make that 
hypothesis no longer tenable. Other similar strategies of 
clinical reasoning are becoming increasingly well-recognized 
[ 53 1 and account in large part for the applications of symbolic 
reasoning techniques to be discussed in the next sectron. 

VIII. SYMBOLIC REASONING A~PKOACHES 

A. Overview 

In the early 1970’s researchers at several institutions simul- 
taneously began to investrgate potential clinical applications of 
symbolic reasonmg techniques drawn from the branch of 
computer science known as artificial mtelligence (Al). The 
field is well-reviewed m a recent book by Winston [ 1281. 
The term “artificial intelligence” is generally accepted to 
include those computer applications that involve symbolic 
inference rather than strictly numerrcal calculations. Exam- 
ples include programs that reason about mineral exploration, 
organic chemrstry. or molecular biology; programs that con- 
verse in English and understand spoken sentences; and pro- 
grams that generate theories from observations. 

Such programs gain their power from qualitative, experi- 
ential judgments, codified in so-called “rules-of-thumb” or 
“heuristics.” m contrast to numerical calculation programs 
whose power derives from the analytical equations used. The 
heuristics focus the attention of the reasoning program on 
parts of the problem that seem most critical and parts of the 
knowledge base that seem most relevant. They also guide the 
applrcation of the domain knowledge to an individual case by 
deletrng items from consrderation as well as by focusing on 
items. The result IS that these programs pursue a line of rea- 
soning as opposed to followmg a sequence of steps in a calcula- 
tion. Among the earliest symbolic inference programs in 
medicine was the diagnostic interviewing system of Klein- 
muntz [ 54 I Other early work included Wortman’s informa- 
tion processing system, the performance of which was largely 
motivated by a desire to understand and simulate the psycho- 
logical processes of neurologists reaching diagnoses [ 1301. 

It was a landmark paper by Gerry in 1973. however, that 
first critically analyzed conventional approaches to computer- 
based clinical decision making and outlined his motivation for 
turning to newer symbolic techniques [34] _ He used the acute 
renal failure program discussed in Section VII-B [33] as an 

example of the problems arising when decision analysis is used 
alone. In particular, he analyzed some of the cases on which 
the program had failed but the physicians considering the cases 
had performed well. His conclusions from these observations 
include the following four points. 

1) Clinical judgment is based less on detailed knowledge of 
pathophysiology than it is on gross chunks of knowledge and a 
good deal of detailed experience from which rules of thumb 
are derived. 

2) Clinicians know facts, of course, but their knowledge is 
also largely judgmental. The rules they learn allow them to 
focus attention and generate hypotheses quickly. Such heuris- 
tics permit them to avoid detailed search through the entire 
problem space. 

3) Clinicians recognize levels of belief or certainty asso 
ciated with many of the rules they use, but they do not 
routinely quantitate or use these certainty concepts in any 
formal statistical manner. 

4) It is easier for experts to state their rules in response to 
perceived misconceptions in others than it is for them to 
generate such decision criteria a priori. 

In the renal failure program medical knowledge had been 
embedded in the structure of the decision tree, This knowl- 
edge was never explicit, and additions to the experts’ judg- 
mental rules had generally required changes to the tree itself. 

Based on observations such as those above, Gorry identified 
at least three important problems for investigation. 

I] Medical Concepts: Clinical decision aids had tradition- 
ally had no true “understandmg” of medicine. Although ex- 
plicit decision trees had given the decision theory programs a 
greater sense of the pertinent associations, medical knowledge 
and the heuristics for problem solving in the field had never 
been explicitly represented nor used. So-called “common 
sense” was often clearly lacking when the programs failed, 
and this was often what most alienated potential physician 
users. 

2) Conversational Capabilities: Both for capturing knowl- 
edge from collaborating experts, and for communicating with 
physician users, Gorry argued that further research on the de- 
velopment of computer-based linguistic capabilities was crucial. 

3) Explanation: Diagnostic programs had seldom empha- 
sized an ability to explain the basis for their decisions in terms 
understandable to the physician. System acceptability was 
therefore inevitably limited; the physician would often have 
no basis for deciding whether to accept the program’s advice, 
and might therefore resent what could be perceived as an at- 
tempt to dictate the practice of medicine. 

Gerry’s group at MIT and Tufts developed new approaches 
to explaining the renal failure problem in light of these obser- 
vations [ 751. 

Due to the limitations of the older techniques, it was per- 
haps inevitable that some medical researchers would turn to 
the Al field for new techniques. Major research areas in AI 
include knowledge representation, heuristic search, natural 
language understanding and generation, and models of thought 
processes-all topics clearly pertinent to the problems we have 
been discussing. Furthermore, AI researchers were beginning 
to look for applications to which they could apply some of 
the techniques they had developed in theoretical domains. 
This community of researchers has grown in recent years, and 
a recent issue of Artificial Intelligence was devoted entirely 
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to applications of AI to biology, medicine, and chemistry 
[ 105] .2s 

Among the programs using symbolic reasoning techniques 
are several systems that have been particularly novel and suc- 
cessful. At the University of Pittsburgh, Pople and Myers 
have developed a system called INTERNIST that assists with 
test selection for the diagnosis of all diseases in internal 
medicine (811. This awesome task has been remarkably suc- 
cessful to date, with the program correctly diagnosing a large 
percentage of complex cases selected from clinical pathologic 
conferences in the major medical journals.26 The program 
uses a hierarchic disease categorization, an ad hoc scoring 
system for quantifying symptom-disease relationships, plus 
some clever heuristics for focusing attention, discriminating 
between competing hypotheses, and diagnosing concurrent 
diseases [82]. The system currently has a limited human 
interface, however, and is not yet implemented for clinical 
trials. 

Weiss, Kulikowski, and Amarel (Rutgers University) and 
Safir (Mt. Sinai Hospital, New York City) have developed a 
model of reasoning regarding disease processes in the eye, 
specifically glaucoma [ 1251 In this specialized application 
area it has been possible to map relationships between observa- 
tions, pathophysiologic states, and disease categories. The 
resulting causal associational network (termed CASNET) 
forms the basis for a reasoning program that gives advice 
regarding disease states in glaucoma patients and generates 
management recommendations. The system is undergoing 
evaluation by a nationwide network of ophthalmologists but 
is not yet offered for routine clinical use. 

For the AI researchers the question of how best to manage 
uncertainty in medical reasoning remains a central issue. The 
programs mentioned have developed ad hoc weighting systems 
and avoided formal statistical approaches. Others have turned 
to the work of statisticians and philosophers of science who 
have devised theories of approximate or inexact reasoning. 
For example, Wechsler [ 1221 describes a program that is based 
upon Zadeh’s fuzzy set theory [ 1331, and Shortliffe and 
Buchanan [ 1011 have turned to confirmation theory for their 
model of inexact reasoning. 

B. Example 

The symbolic reasoning program selected for discussion is 
the MYCIN System at Stanford University [ 1021. The re- 
searchers cited a variety of design considerations which moti- 
vated the selection of Al techniques for the consultation 
system they were developing [ 991. They primarily wanted it 
to be useful to physicians and therefore emphasized the selec- 
tion of a problem domain in which physicians had been shown 
to err frequently, namely the selection of antibiotics for 
patients with infections. They also cited human issues that 
they felt were crucial to make the system acceptable to 

” Many of the systems which use AI techniques for medical decision 
making were developed on the SUMEX-AIM computing resource, a 
nationally shared system devoted entirely to applications of Al to the 
biomedical sciences. The SUMEX-AIM computer is physically located 
at Stanford University but is used by researchers nationwide via connec- 
tions to computer networks. The resource is funded by Lhe Division 
of Research Resources. Biotechnology Branch, National Institutes of 
Health. 

*‘ Data communicated by Drs. Pople and Myers at the Fourth Annual 
A.I.M. Workshop, Rutgers University, June 1978. 

physicians: 
1) it should be able to explain its decisions in terms of a 

line of reasoning that a physician can understand; 
2) it should be able to justify its performance by responding 

to questions expressed in simple English; 
3) it should be able to “learn” new information rapidly by 

interacting directly with experts; 
4) its knowledge should be easily modifiable so that per- 

ceived errors can be corrected rapidly before they recur 
in another case; and 

5) the interaction should be engineered with the user in 
mind (in terms of prompts, answers, and information 
volunteered by the system as well as by the users). 

All these design goals were based on the observation that 
previous computer decision aids had generally been poorly 
accepted by physicians, even when they were shown to per- 
form well on the tasks for which they were designed. MYCIN’s 
developers felt that barriers to acceptance were largely concep- 
tual and could be counteracted in large part if a system were 
perceived as a clinical tcroi rather than a dogmatic replacement 
for the primary physician’s own reasoning. 

Knowledge of infectious diseases is represented in MYCIN as 
production rules, each containing a “packet” of knowledge 
obtained from collaborating experts [ 1021 .27 A production 
rule is simply a conditional statement which relates observa- 
tions to associated inferences that may be drawn. For exam- 
ple, a MYCIN rule might state that “if a bacterium is a gram 
positive coccus growing in chains, then it is apt to be a strepto- 
coccus.” MYClN’s power is derived from such rules in a 
variety of ways: 

1) it is the program that determines which rules to use and 
how they should be chained together to make decisions 
about a specific case;** 

2) the rules can be stored in a machine-readable format but 
translated into English for display to physicians; 

3) by removing, altering, or adding rules, the system’s 
knowledge structures can be rapidly modified without 
explicitly restructuring the entire knowledge base: and 

4) the rules themselves can often form a coherent explana- 
tion of system reasoning if the relevant ones are trans- 
lated into English and displayed in response to a user’s 
question. 

Associated with all rules and inferences are numerical weights 
reflecting the degree of certainty associated with them. These 
numbers, termed certainty factors, form the basis for the sys- 
tem’s inexact reasoning [ 1011. They allow the judgmental 
knowledge of experts to be captured in rule form and then 
used in a consistent fashion. 

The MYCIN system has been evaluated regarding its per- 
formance at therapy selection for patients with either septi- 
cemia [ 1321 or meningitis [ 13 11. The program performs 
comparably with experts in these two task domains, but as 
yet it has no rules regarding the other infectious disease prob- 
lem areas. Further knowledge base development will there- 
fore be required before MYClN is made available for clinical 
use; hence, questions regarding its acceptability to physicians 

2’Production rules are a technique frequently employed in AI re- 
search [ 91 and effectively applied to other scientific problem domains 
161. 

*sThe control structure used is termed “goal-oriented” and is similar 
to the consequent-theorems used in Hewitt’s PLANNER 142). 
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cannot yet be assessed. However,  the required implementation IX. CONCLUSIONS 
stages have been delineated [ 1001, attention has been paid to 
all the design criteria mentioned above, and the program does 

This review has shown that there are two recurring questions 

have a powerful explanation capability [ 951. 
regarding computer-based clinical decision making: 

1) Performance-how can we design systems that reach 

C. Discussion of the Methodology better, more reliable decisions in a broad range of appli- 

Whereas the computations used by the other paradigms 
cations, and 

mostly involve straightforward application of well-developed 
2) Acceptability-how can we more effectively encourage 

computing techniques, artificial intelligence methods are 
the use of such systems by physicians or other intended 

largely experimental; new approaches to knowledge represen- 
users? 

tation, language understanding, heuristic search, and the other 
We shall summarize these points separately by reviewing 

symbolic reasoning problems we have mentioned are still 
many of the issues common to all the paradigms discussed in 

needed. Thus the Al programs tend to be developed in re- 
this paper. 

search environments where short-term practical results are A. Performance Issues 
unlikely to be found. However,  out of this research are 
emerging techniques for coping with many of the problems 

Central to assuring a program’s adequate performance is a 

encountered by the other paradigms we have discussed. Al 
matching of the most appropriate technique with the problem 

researchers have developed promising methods for handling 
domain . We have seen that the structured logic of clinical 

concurrent diseases [ 821, [ 1251, assessing the time course 
algorithms can be effectively applied to triage functions and 

of disease [ 181 , and acquiring adequate structured knowledge 
other primary care problems, but they would be less naturally 

from experts [ 111, Furthermore, inexact reasoning tech- 
matched with complex tasks such as the diagnosis and manage- 

niques have been developed and implemented [ 1011 (although 
ment of acute renal failure. Good statistical data may support 

they tend to be justified largely on intuitive grounds). In 
an effective Bayesian program in settings where diagnostic 

addition, the techniques of artificial intelligence provide a way 
categories are small in number, nonoverlapping, and well- 

to respond to many of Gorry’s observations regarding the 
defined, but the inability to use qualitative medical knowledge 

three major inadequacies of prior paradigms as described in 
limits the effectiveness of the Bayesian approach in more 

Section VIII-A: 1) the medical Al programs all tend to stress 
difficult patient management or diagnostic environments. 

the representation of medical knowledge and a sense of under- 
Similarly, mathematical models may support decision making 

standing the underlying concepts; 2) many of them have 
in certain well-described fields in which observations are 

conversational capabilities which draw on language processing 
typically quantified, and related by functional expressions, 

research; and 3) explanation capabilities have been a primary 
but in which the knowledge is typically limited to numerical 

focus of systems such as MYCIN. 
encoding. These examples, and others, demonstrate the need 

Szolovits and Pauker have recently reviewed some applica- 
for thoughtful consideration of the technique most appro- 

tions of Al to medicine and have attempted to weigh the 
priate for managing a clinical problem. In general the simplest 

successes of this young field against the very real problems 
effective approach is to be preferred,29 but acceptability 

that lie ahead [ 1081. They identify several deficiencies of 
issues must also be considered as discussed below. 

current systems. For example, termination criteria are still 
As researchers have ventured into more complex clinical 

poorly understood. Although INTERNIST can diagnose 
domains, a number of difficult problems have tended to de- 

simultaneous diseases, it also pursues all abnormal findings to 
grade the quality of performance of computer-based decision 

completion, even though a clinician often ignores minor un- 
aids. Significant clinical problems require large knowledge 

explained abnormalities if the rest of a patient’s clinical status 
bases that contain complex interrelationships including time 

is well understood. In addition, although some of these pro- 
and functional dependencies. The knowledge of such domains 

grams now cleverly mimic the reasoning styles observed in 
is inevitably open-ended and incomplete, so the knowledge 

experts [ 171, [ 531, it is less clear how to keep the systems 
base must be easily extensible. Not only does this require a 

from abandoning one hypothesis and turning to another one 
flexible representation of knowledge, but it encourages the 

as soon as new information suggests another possibility. Pro- 
development of novel techniques for the acquisition and inte- 

grams that operate this way appear to digress from one topic 
gration of new facts and judgments. Similarly, the inexactness 

to another-a characteristic that decidedly alienates a user 
of medical inference must somehow be represented and mani- 

regardless of the validity of the final diagnosis or advice. 
pulated within effective consultation systems. As we have 

Still largely untapped is the power of an Al program to 
discussed, all these performance issues are important knowl- 

understand its own knowledge base, i.e., the structure and 
edge engineering research problems for which artificial intelli- 

content of the reasoning mechanisms as well as of the medical 
gence already offers promising new methods. 

facts. In effect, AI programs have the ability to “know what 
It is also important to consider the extent to which a pro- 

‘, 
they know,” the best working example of which can be found 

gram,s understanding” of its task domain will heighten its 

in the prototype system named Teiresias [ lo]. Because such 
performance, particularly in settings where knowledge of the 

programs can reason about their own knowledge, they have 
field tends to be highly judgmental and poorly quantified. We 

the power to encode knowledge about strategies, e.g., when to 
use and when to ignore specific items of medical knowledge 
and which leads to follow up on. Such “meta-level” knowl- 

191t is also always appropriate to ask whether computer-based ap- 
proaches are needed at all for a given decision making task. For all but 

edge offers a new dimension to the design of “intelligent the most complex clinical algorithms, for example, the developers have 

assistant” programs which we predict will be exploited in tended to discard computer programs. Similarly, Schwartz er al. 

medical decision making systems of the future. 
pointed out that the decision analyses can often be successfully accom- 
plished in a qualitative manner using paper and pencil 1941. 
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use the term “understanding” here to refer to a -program’s 
ability to reason about, as well as reason with, its medical 
knowledge base. This implies a substantial amount of judg- 
mental or structural knowledge (in addition to data) contained 
within the program. Analyses of human clinical decision 
making [ 171, [ 53 ] suggest that as decisions move from simple 
to complex, a physician’s reasoning style becomes less algo- 
rithmic and more heuristic, with qualitative judgmental knowl- 
edge and the conditions for invoking it coming increasingly 
into play. Furthermore, the performance of complex decision 
aids will also be heightened by the representation and utiliza- 
tion of high-level “meta-knowledge” that permits programs to 
understand their own limitations and reasoning strategies. In 
order to design medical computing programs with these capa- 
bilities, the designers themselves will have to become cognizant 
of “knowledge engineering” issues. It is especially important 
that they find effective ways to match the knowledge struc- 
tures they use to the complexity of the tasks their programs 
are designed to undertake. 

B. Acceptability Issues 
A recurring observation as one reviews the literature of 

computer-based medical decision making is that essentially 
none of the systems has been effectively used outside of a 
research environment, even when its performance has been 
shown to be excellent! This suggests that it is an error to 
concentrate research primarily on methods for improving the 
computer’s decision making performance when clinical impact 
depends on solving other problems of acceptance as well. 
There are some data [ 1061 to support the extreme view that 
the biases of medical personnel against computers are so strong 
that systems will inevitably be rejected, regardless of perfor- 
mance. However,  we are beginning to see examples of applica- 
tions in which initial resistance to automated techniques has 
gradually been overcome through the incorporation of ade- 
quate system benefits [ 12 I] 

Perhaps one of the most revealing lessons on this subject is 
an observation regarding the system of Mesel et al. [ 701 de- 
scribed in Section II-B. Despite documented physician resis- 
tance to clinical algorithms in other settings [38], the physi- 
cians in Mesel’s study accepted the guidance of protocols for 
the management of chemotherapy in their cancer patients. It is 
likely that the key to acceptance in this instance is the fact 
that these physicians had previously had no choice but to refer 
their patients with cancer to the tertiary care center in Bir- 
mingham where all complex chemotherapy was administered. 
The introduction of the protocols permitted these physicians 
to undertake tasks that they had previously been unable to do. 
It simultaneously allowed maintenance of close doctor- 
patient relationships and helped the patients avoid frequent 
long trips to the center. The motivation for the physician to 
use the system is clear in this case. It is reminiscent of Rosati’s 
assertion that physicians will first welcome computer decision 
aids when they become aware that colleagues who are using 
them have a clear advantage in their practice [ 871 

A heightened awareness of “human engineering” issues 
among medical computing researchers will also make com- 
puters more acceptable to physicians by making the programs 
easier and more pleasant to use. Fox has recently reviewed 
this field in detail [22]. The issues range from the mechanics 
of interaction with the computer (e.g., using display terminals 
with such features as light pens, special keyboards, color, and 

graphics) to the features of the program that make it appear 
as a helpful tool rather than a complicating burden. Also 
involved, from both the mechanical and global design sides, is 
the development of flexible interfaces that tailor the style of 
the interaction to the needs and desires of individual 
physicians. 

Adequate attention must also be given to the severe time 
constraints perceived by physicians. Ideally they would like 
programs to take no more time than they currently spend 
when accomplishing the same task on their own. Time and 
schedule pressures are similarly likely to explain the greater 
resistance to automation among interns and residents than 
among medical students or practicing physicians in Starts- 
man’s study [ 106 ] 

The issue of a program’s “self-knowledge” impacts on the 
acceptance of consultation systems in much the same way as it 
does upon program performance. Decision makers, in general, 
and physicians, in particular, will place more trust in systems 
that appear to understand their own limitations and capa- 
bilities, and that know when to admit ignorance of a problem 
area or inability to support any conclusion regarding an 
individual patient. Moreover, physicians will have a means 
for checking up on these automated assistants if the programs 
have an ability to explain not only the reasoning chain lead- 
ing to their decisions but their problem solving strategies also. 
High-level knowledge, including a sense of scope and limita- 
tions, may thus allow a program to know enough about it- 
self to prevent its own misuse. Furthermore, since systems 
that are not easily modifiable tend not to be accepted, meta- 
level knowledge about representation and interconnections 
within the knowledge base may help overcome the problem of 
programs becoming tied too closely to a store of knowledge 
that is regionally or temporally specific. It is therefore im- 
portant to stress that considerations such as those we have 
mentioned here may argue in favor of using symbolic reason- 
ing techniques even when a somewhat less complex approach 
might have been adequate for the decision task itself. 

IX. SUMMARY 

In summary, the trend towards increased use of knowledge 
engineering techniques for clinical decision programs stems 
from the dual goals of improving the performance and increas- 
ing the acceptance of such systems. Both acceptability and 
performance issues must be considered from the outset in a 
system’s design because they dictate the choice of methodology 
as much as the task domain itself does. As greater experience 
is gained with these techniques, and as they become better 
known throughout the medical computing community, it is 
likely that we will see increasingly powerful unions between 
symbolic reasoning and the alternate paradigms we have dis- 
cussed. One lesson to be drawn lies in the recognition that 
much basic research remains to be done in medical computing, 
and that the field is more than the application of established 
computing techniques to medical problems. 
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